Plotting in R
Explore different types of plots in ggplot2
ggplot2 is an R package for creating graphics based on The Grammar of Graphics1. The Grammar of Graphics is a language for talking about the different parts of a plot, and allow you to build plots creatively and iterively. The following material was developed by Maria Pachiadaki, Sarah K. Hu, Brett Longworth and David Geller.
R version and required packages
The demonstration material was developed and tested in R 4.1.0. It requires the following packages:
palmerpenguins
DT
tidyverse
ggpubr
plotly
dygraphs
cowplot
patchwork
viridis
Dataset
We will use the palmerpenguins dataset. Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network. Alison Horst gathered the data into an R package and is responsible for all the great penguin illustrations.
We will briefly check the structure of the data table (penguins
) before we start plotting. Here I am using the datatable
function from from DT package which facilitates the display of dataframes, matrices or tibbles on HTLM pages.
library(palmerpenguins) # load palmerpenguins package
library(DT)# load DT package
datatable(penguins) #check table structure
And summarize the penguins table using the summary
function:
summary(penguins) #summarize data
species island bill_length_mm bill_depth_mm
Adelie :152 Biscoe :168 Min. :32.10 Min. :13.10
Chinstrap: 68 Dream :124 1st Qu.:39.23 1st Qu.:15.60
Gentoo :124 Torgersen: 52 Median :44.45 Median :17.30
Mean :43.92 Mean :17.15
3rd Qu.:48.50 3rd Qu.:18.70
Max. :59.60 Max. :21.50
NA's :2 NA's :2
flipper_length_mm body_mass_g sex year
Min. :172.0 Min. :2700 female:165 Min. :2007
1st Qu.:190.0 1st Qu.:3550 male :168 1st Qu.:2007
Median :197.0 Median :4050 NA's : 11 Median :2008
Mean :200.9 Mean :4202 Mean :2008
3rd Qu.:213.0 3rd Qu.:4750 3rd Qu.:2009
Max. :231.0 Max. :6300 Max. :2009
NA's :2 NA's :2
Skimr
is another useful package to summarize data tables
#install skimr package
library(skimr)
skim(penguins) #summarize data
Name | penguins |
Number of rows | 344 |
Number of columns | 8 |
_______________________ | |
Column type frequency: | |
factor | 3 |
numeric | 5 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
species | 0 | 1.00 | FALSE | 3 | Ade: 152, Gen: 124, Chi: 68 |
island | 0 | 1.00 | FALSE | 3 | Bis: 168, Dre: 124, Tor: 52 |
sex | 11 | 0.97 | FALSE | 2 | mal: 168, fem: 165 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
bill_length_mm | 2 | 0.99 | 43.92 | 5.46 | 32.1 | 39.23 | 44.45 | 48.5 | 59.6 | ▃▇▇▆▁ |
bill_depth_mm | 2 | 0.99 | 17.15 | 1.97 | 13.1 | 15.60 | 17.30 | 18.7 | 21.5 | ▅▅▇▇▂ |
flipper_length_mm | 2 | 0.99 | 200.92 | 14.06 | 172.0 | 190.00 | 197.00 | 213.0 | 231.0 | ▂▇▃▅▂ |
body_mass_g | 2 | 0.99 | 4201.75 | 801.95 | 2700.0 | 3550.00 | 4050.00 | 4750.0 | 6300.0 | ▃▇▆▃▂ |
year | 0 | 1.00 | 2008.03 | 0.82 | 2007.0 | 2007.00 | 2008.00 | 2009.0 | 2009.0 | ▇▁▇▁▇ |
As we can see from the summary table three different species of penguins were recorded in three different islands.
Scatterplots
Let’s explore if there is a correlation between the body mass of the penguins and the flipper length of the penguins using geom_point()
:
library(tidyverse) # load the tidyverse package (contains ggplot2)
ggplot(penguins, aes(x=flipper_length_mm, y=body_mass_g))+
#ass points
geom_point()
Let’s add the trend line (fitting linear model) using geom_smooth()
:
ggplot(penguins, aes(x=flipper_length_mm,y=body_mass_g))+
geom_point()+
#add trend line
geom_smooth(method="lm")
Let’s add a trend line together with the equation and the R2 value using the package ggpubr
:
library(ggpubr) #package the facilitates the display of the equation
ggplot(penguins, aes(x=flipper_length_mm, y=body_mass_g))+
geom_point()+
geom_smooth(method="lm") +
# add equation use label.y to define the position
stat_regline_equation(label.y = 5800, aes(label = ..eq.label..)) +
stat_regline_equation(label.y = 5600, aes(label = ..rr.label..))
Are there any differences between the species? Use color
in aesthetics to color and group by species:
#regression equations will overlap, we will use faceting for them (below)
ggplot(penguins, aes(x=flipper_length_mm, y=body_mass_g, color=species))+
geom_point()+
geom_smooth(method="lm")
Besides of using different colors for the data points, we can also use different shapes:
ggplot(penguins, aes(x=flipper_length_mm, y=body_mass_g, color=species, shape=sex))+
geom_point()
Geoms that draw points have a shape parameter. Legal shape values are the numbers 0 to 25, and the numbers 32 to 127.
Shapes 0 to 14 are outline only: use color to change colors (outline)
Shapes 15 to 20 are fill only: use color to change colors (fill)
-Shapes 21 to 25 are outline + fill: use color to change the outline color and fill to change the fill color
Shapes 32 to 127 represent the corresponding ASCII characters: We can also change the point size:
ggplot(penguins, aes(x=flipper_length_mm, y=bill_length_mm, color=species))+
geom_point(aes(shape=sex, size=body_mass_g))
Challenge: Create a similar plot where flipper length is the x-axis and body mass is along the y-axis. Use a scatterplot where the shapes will all be triangles that all have a black outline and filled in color associated with each penguin species.
The Grammar of Graphics
In the exploration of the palmerpenguins
data, we started with a simple plot and added to it. We added a linear model as a trend line, added model parameters to the plot, grouped the data by species, and changed things like point size and shape.
Starting with the first plot, we started by using the ggplot()
function to create a ggplot object. As parameters, we told ggplot()
we wanted to use penguins
as data for the plot, and used the aes()
function to define how we wanted to map the penguin data to the plot aesthetics. We mapped flipper_length_mm
onto the x axis and body_mass_g
onto the y axis.
Next, we have to tell ggplot how we want to display the data. Geoms take mapped data and make it visible on the plot. geom_point()
is a geom that (you guessed it) plots points. Note that we’ve added our first layer to the plot by sending the object created by ggplot()
to geom_point()
using the +
. Why not use the pipe (%>%
)? Ggplot was developed before the magrittr pipe, so +
it is. This has made a lot of people very angry and been widely regarded as a bad move2.
Layers are functions, so they take parameters that control what they do. For instance, when we used geom_point()
as a layer to display available plot symbols above, we used this line:
geom_point(aes(shape = shape), size = 5, fill = 'red')
This uses aes()
to map shape
from the data to the shape displayed. size = 5
and fill = 'red'
define the size and fill color of all points plotted. Assigning a constant to an aesthetic sets it for the entire geom, while mapping data to an aesthetic with aes()
allows it to vary with the data mapped. More details on aesthetics specifications can be found here
Each additional layer adds something to the plot or modifies the plot defaults. We can add layers to add additional plots with the same or different data mapped to the plot aesthetics, modify the plot scales, change the coordinate system of the axes, change the theme of the plot, and break the plot into subplots by a categorical variable, which we’ll look at next.
Faceting
Faceting is the process that split the chart window in several small parts (a grid), and display a similar chart in each section. Each section usually shows the same graph for a specific group of the dataset. We will be working with facet_wrap()
:
ggplot(penguins, aes(x=flipper_length_mm, y=body_mass_g, color=species))+
geom_point(aes(shape=sex))+
# lay out panels horizontally, split species, set the x axis free
facet_wrap(~species, scales="free_x")+
geom_smooth(method="lm", se=FALSE)+
stat_regline_equation(label.y = 6000, aes(label = ..eq.label..)) +
stat_regline_equation(label.y = 5800, aes(label = ..rr.label..))
And facet_grid
:
ggplot(penguins, aes(x=flipper_length_mm, y=body_mass_g, color=species))+
geom_point(aes(shape=sex))+
# lay out panels horizontally by species and vertically by sex
facet_grid(sex~species, scales="free_x")+
geom_smooth(method="lm", se=FALSE)
Themes
There are built in-ggplot themes, as well as theme packages. There is a long list of cosmetic changes you can make with theme(). Let’s try changing themes in other type of plot, histograms using geom_histogram()
. Let’s plot the distribution of the flipper length for each species. We will use Maria’s favourite theme, them_bw()
:
#use fill to color the different species. What would happen if you used color instead?
ggplot(penguins, aes(flipper_length_mm, fill=species)) +
#set the transparency at 0.6 in order to be able to observe overlap, use the position "identity" not to have the bins stacked
geom_histogram(alpha=0.8, position="identity")+
#use theme bw
theme_bw()
theme_void()
is another build-in theme:
ggplot(penguins, aes(flipper_length_mm, fill=species)) +
geom_histogram(alpha=0.8, position="identity")+
theme_void()
As we will see below, themes can be modified.
Labels
Labels can be modified using labs(x = "Title on x axis", y = "Title on y axis")
and theme(axis.title.x = element_text(family, face, colour, size), axis.title.y = element_text(family, face, colour, size))
:
ggplot(penguins, aes(flipper_length_mm, fill=species)) +
geom_histogram(alpha=0.8, position="identity")+
theme_bw() +
#set the labels for x and y axis
labs(x = "Flipper length (mm)", y = "Counts")+
#modify the the color, the face and the size of the label text
theme(axis.title.x = element_text(color = "grey30", face = "bold", size = 14),
axis.title.y = element_text(color = "grey30", face = "bold", size = 14))
Axis
The appearance of the text on the axis can be modified using theme(axis.text.x = element_text(family, face, colour, size), axis.text.y = element_text(family, face, colour, size))
:
#modify axis font size
ggplot(penguins, aes(flipper_length_mm, fill=species)) +
geom_histogram(alpha=0.8, position="identity")+theme_bw()+
labs(x = "Flipper length (mm)", y = "Counts")+
theme(axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14),
#change color and size of axis text
axis.text.x = element_text(color = "grey30", size = 12),
axis.text.y = element_text(color = "grey30", size = 12))
Modify x axis to add more tick points:
#modify axis font size
ggplot(penguins, aes(flipper_length_mm, fill=species)) +
geom_histogram(alpha=0.8, position="identity")+theme_bw()+
labs(x = "Flipper length (mm)", y = "Counts")+
#add breaks
scale_x_continuous(breaks=seq(170, 230,10))+
#force the y axis to start at 0
scale_y_continuous(expand = c(0,0))+
theme(axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14),
axis.text.x = element_text(color = "grey30", size = 12),
axis.text.y = element_text(color = "grey30", size = 12))
We can change the angle, and justification of the axis text:
#modify axis font size
ggplot(penguins, aes(flipper_length_mm, fill=species)) +
geom_histogram(alpha=0.8, position="identity")+theme_bw()+
labs(x = "Flipper length (mm)", y = "Counts")+
#change the text angle on the x axis
theme(axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14),
#rotate x text angle to 45
axis.text.x = element_text(color = "black", size = 12, angle = 45),
axis.text.y = element_text(color = "black", size = 12))
The horizontal or vertical justification, (hjust and vjust) can also be adjusted. This hjust and vjust argument can be best explained using this figure [Source from Stackoverflow]:
e.g.:
ggplot(penguins, aes(flipper_length_mm, fill=species)) +
geom_histogram(alpha=0.8, position="identity")+
theme_bw()+
labs(x = "Flipper length (mm)", y = "Counts")+
theme(axis.title.x = element_text(color = "grey30", face = "bold", size = 14),
axis.title.y = element_text(color = "grey30", face = "bold", size = 14),
axis.text.x = element_text(color = "black", size = 12, angle = 45, hjust = 1, vjust = 1),
axis.text.y = element_text(color = "black", size = 12))
Legends
Legends can be modified inside theme using legend.title=element_text(family, face, size, color)
and legend.text=element_text(family, face, size, color)
. The position of the legend can be modified using legend.position
:
ggplot(penguins, aes(flipper_length_mm, fill=species)) +
geom_histogram(alpha=0.8, position="identity")+
theme_bw()+
labs(x = "Flipper length (mm)", y = "Counts", fill="Species")+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14),
#change appearance of legend title
legend.title=element_text(color = "black", face = "bold", size=14),
#change appearance of legend text
legend.text=element_text(size=12),
legend.position="top")
It is also possible to position the legend inside the plotting area.The numeric position below is relative to the entire area, including titles and labels, not just the plotting area; where x,y is 0,0 (bottom left) to 1,1 (top right):
ggplot(penguins, aes(flipper_length_mm, fill=species)) +
geom_histogram(alpha=0.8, position="identity")+theme_bw()+
labs(x = "Flipper length (mm)", y = "Counts", fill="Species")+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14),
legend.title=element_text(color = "black", face = "bold", size=14),
legend.text=element_text(size=12),
#adjuct legend position
legend.position=c(0.9, 0.85))
Challenge: Remake this plot, remove the legend and the x-axis labels.
Other modifications
Adjust the appearance of the facet text using strip.text
and the background using strip.background
:
ggplot(penguins, aes(x=flipper_length_mm, y=body_mass_g, color=species))+
geom_point(aes(shape=sex))+
facet_wrap(~species, scales="free_x")+
geom_smooth(method="lm", se=FALSE)+
stat_regline_equation(label.y = 6000, aes(label = ..eq.label..)) +
stat_regline_equation(label.y = 5800, aes(label = ..rr.label..))+
labs(x = "Flipper length (mm)", y = "Body mass (g)", fill="Species", shape="Sex")+
theme_bw()+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14),
legend.title=element_text(color = "black", face = "bold", size=14),
legend.text=element_text(size=12),
#modify text
strip.text.x = element_text(colour = "grey30", face = "bold", size=16),
#modify background
strip.background =element_rect(fill="white"))
To completely remove the background of the facet text you can use strip.background = element_blank()
:
ggplot(penguins, aes(x=flipper_length_mm, y=body_mass_g, color=species))+
geom_point(aes(shape=sex))+
facet_grid(island~species, scales="free_x")+
geom_smooth(method="lm", se=FALSE)+
stat_regline_equation(label.y = 6000, aes(label = ..eq.label..)) +
stat_regline_equation(label.y = 5600, aes(label = ..rr.label..))+
labs(x = "Flipper length (mm)", y = "Body mass (g)", fill="Species", shape="Sex")+
theme_bw()+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14),
legend.title=element_text(color = "black", face = "bold", size=14),
legend.text=element_text(size=12),
#modify text
strip.text = element_text(colour = "grey30", face = "bold", size=16),
#modify background
strip.background =element_blank())
Colors
There are several ways colors can be modified in ggplot2.
- Manually with
scale_color_manual()
orscale_fill_manual()
(can accept hex numbers or names):
ggplot(penguins, aes(flipper_length_mm, fill=species)) +
geom_histogram(alpha=0.8, position="identity")+
scale_fill_manual(values=c("orange" , "purple", "#69b3a2"))+
theme_bw()+
labs(x = "Flipper length (mm)", y = "Counts", fill="Species")+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14),
legend.title=element_text(color = "black", face = "bold", size=14),
legend.text=element_text(size=12),
legend.position=c(0.9, 0.85))
- Creating of evenly spaced colours for discrete data with
scale_color_hue()
orscale_fill_hue()
(can accept hex or names):
ggplot(penguins, aes(flipper_length_mm, fill=species)) +
geom_histogram(alpha=0.8, position="identity")+
scale_fill_hue(h = c(0, 90))+
theme_bw()+
labs(x = "Flipper length (mm)", y = "Counts", fill="Species")+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14),
legend.title=element_text(color = "black", face = "bold", size=14),
legend.text=element_text(size=12),
legend.position=c(0.9, 0.85))
- Using packages that contain palettes e.g.
RColorBrewer
,viridis
, orPaletteer
:
library(viridis)
ggplot(penguins, aes(flipper_length_mm, fill=species)) +
geom_histogram(alpha=0.6, position="identity")+
scale_fill_viridis(discrete=TRUE)+
theme_bw()+
labs(x = "Flipper length (mm)", y = "Counts", fill="Species")+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14),
legend.title=element_text(color = "black", face = "bold", size=14),
legend.text=element_text(size=12),
legend.position=c(0.9, 0.85))
Factor colors
# Insert custom colors with factoring:
<- c("Adelie", "Chinstrap", "Gentoo")
species_order <- c("pink", "lightgreen", "grey")
species_color
# Set new column equal to factor of correct ORDER
$SPECIES_ORDER <- factor(penguins$species, levels = species_order)
penguins
# Set order equal to names of colors
names(species_color) <- species_order
colnames(penguins) # New column has been added
[1] "species" "island" "bill_length_mm"
[4] "bill_depth_mm" "flipper_length_mm" "body_mass_g"
[7] "sex" "year" "SPECIES_ORDER"
Then modify the fill=
in the ggplot code and add scale_fill_manual(values = ...)
ggplot(penguins, aes(flipper_length_mm, fill = SPECIES_ORDER)) +
geom_histogram(alpha = 0.8, position = "identity") +
scale_fill_manual(values = species_color) +
theme_bw() +
labs(x = "Flipper length (mm)",
y = "Counts", fill = "Species") +
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black",face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold",size = 14),
legend.title = element_text(color = "black", face = "bold", size = 14),
legend.text = element_text(size = 12), legend.position = c(0.9, 0.85))
An example of why this is important:
# If we take out one of the species, like Chinstrap, we want the colors to remain the same for the species. This way you can link colors throughout your whole analysis
%>%
penguins filter(species != "Chinstrap") %>%
ggplot(aes(flipper_length_mm, fill = SPECIES_ORDER)) +
geom_histogram(alpha = 0.8, position = "identity") +
scale_fill_manual(values = species_color) +
theme_bw() +
labs(x = "Flipper length (mm)",
y = "Counts", fill = "Species") +
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black",face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold",size = 14),
legend.title = element_text(color = "black", face = "bold", size = 14),
legend.text = element_text(size = 12), legend.position = c(0.9, 0.85))
# By removing Chinstrap - the green data was removed, and we kept the same color for Adelie and Gentoo.
# This is the same syntax for shapes
Barplots
A simple barplot can be created using the function geom_bar()
. We will plot how many individuals from each species were recorded in each island:
ggplot(penguins,aes(x=island, fill=species))+
geom_bar()+
scale_fill_manual(values = c("orange" , "purple", "#69b3a2"))+
theme_bw()+
labs(x = "Island", y = "Number of individuals")+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14))
If we want to produce an non-stacked barplot we need to use the argument position=position_dodge2
in geom_bar()
:
ggplot(penguins,aes(x=island, fill=species))+
geom_bar(position=position_dodge2(preserve = "single"))+
scale_fill_manual(values = c("orange" , "purple", "#69b3a2"))+
theme_bw()+
labs(x = "Island", y = "Number of individuals")+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14))
Changing the position to fill, will give us the relative abundance in a stacked plot:
ggplot(penguins,aes(x=island, fill=species))+
geom_bar(position="fill")+
scale_fill_manual(values = c("orange" , "purple", "#69b3a2"))+
theme_bw()+
labs(x = "Island", y = "Relative abundance")+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14))
We can aslo create the same plot horizontally with coord_flip()
:
ggplot(penguins,aes(x=island, fill=species))+
geom_bar(position="fill")+
scale_fill_manual(values = c("orange" , "purple", "#69b3a2"))+
theme_bw()+
labs(x = "Island", y = "Relative abundance")+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14))+
coord_flip()
For axis scales adjustments and transformations, please see these examples.
Boxplots
Let visualize the distribution of flipper length in the different species and sexes using the function geom_boxplot()
to create a box and whiskers plot:
ggplot(penguins, aes(x=species, y=flipper_length_mm, fill=sex))+
geom_boxplot()+
theme_bw()+
labs(x = "Species", y = "Flipper length (mm)")+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14))
Let’s omit the NA values during plotting and reduce the outlier size:
ggplot(na.omit(penguins), aes(x=species, y=flipper_length_mm, fill=sex))+
geom_boxplot(outlier.size = 1)+
theme_bw()+
labs(x = "Species", y = "Flipper length (mm)")+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14))
You can add the individual points using geom_jitter()
. We will use position_jitterdodge()
to align the points with dodged the boxplots:
ggplot(na.omit(penguins), aes(x=species, y=flipper_length_mm, fill=sex))+
geom_boxplot()+
geom_point(position = position_jitterdodge(), size=0.4, alpha=0.9) +
theme_bw()+
labs(x = "Species", y = "Flipper length (mm)")+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14))
Violin plots
We can visualize the same distribution using the function geom_violin()
to create a violin plot, a mirrored density plot displayed in the same way as a boxplot:
ggplot(na.omit(penguins), aes(x=species, y=flipper_length_mm, fill=sex))+
geom_violin()+
theme_bw()+
labs(x = "Species", y = "Flipper length (mm)")+
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14))
We also overlay different types of plots:
ggplot(na.omit(penguins), aes(x = species, y = flipper_length_mm, fill = sex)) +
geom_violin() +
geom_boxplot(position = position_dodge(width = 0.9), width = 0.2) +
theme_bw() +
labs(x = "Species", y = "Flipper length (mm)") +
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14),
#remove internal grid
panel.grid = element_blank())
Combining plots
Lets set 2 plots equal to R objects and combine them:
# Horizontal bar:
<- ggplot(penguins, aes(x = island, fill = species)) +
horizontal_bar geom_bar(position = "fill") +
scale_fill_manual(values = c("orange" , "purple", "#69b3a2")) +
theme_bw() + labs(x = "Island", y = "Relative abundance") +
theme(axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14)) +
coord_flip()
# Violin plot (slightly different than above)
<-ggplot(na.omit(penguins), aes(x=sex, y=flipper_length_mm, fill=species))+
violin_modgeom_violin()+
geom_boxplot(position=position_dodge(width=0.9), width=0.2) +
scale_fill_manual(values = c("orange" , "purple", "#69b3a2"))+
theme_bw()+
labs(x = "Sex", y = "Flipper length (mm)")+
theme(legend.position = "none",
axis.text.x = element_text(color = "black", size = 12),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "black", face = "bold", size = 14),
axis.title.y = element_text(color = "black", face = "bold", size = 14))
And combine them:
library(cowplot)
library(patchwork)
::plot_grid(horizontal_bar,
cowplot
violin_mod,ncol = 1)
# Patchwork
+ violin_mod + patchwork::plot_layout(ncol = 1) horizontal_bar
Challenge: add labels (“A” and “B”) to cowplot function
Saving plots
ggsave()
is a function for saving the last plot displayed. It guesses the type of graphics device from the extension.
#make directory called "plots"
dir.create("plots", showWarnings = F)
#and save the last plot as png, adjust width and height
ggsave("plots/combined.png", width = 15, height =10, units = "cm")
#save the last plot as svg, adjust width and height
ggsave("plots/combined.svg", width = 15, height =10, units = "cm")
Plots can also be saved with print()
<- horizontal_bar + violin_mod + patchwork::plot_layout(ncol = 1)
p png("plots/combined_print.png", width=1800,height=1600,res=300)
print(p)
dev.off()
Plot interactively with plotly or dygraphs
Dataset
The following material is from the “Reproducible Reporting with R (R3) for marine ecological indicators” Webminar designed and instructed by Ben Best, who gracefully allowed us to use it.
Get URL to CSV
Visit the ERDDAP server https://oceanview.pfeg.noaa.gov/erddap and do a Full Text Search for Datasets using “cciea” in the text box before clicking Search. These are all the California Current IEA datasets. From the listing of datasets, click on data for the “CCIEA Anthropogenic Drivers” dataset. Note the filtering options for time
and other variables like consumption_fish (Millions of metric tons)
and cps_landings_coastwide (1000s metric tons)
. Set the time filter from being only the most recent time to the entire range of available time. Scroll to the bottom and Submit with the default .htmlTable
view. You get an web table of the data. Notice the many missing values in earlier years. Go back in your browser to change the the File type to .csv
. Now instead of clicking Submit, click on Just generate the URL. Although the generated URL lists all variables to include, the default is to do that, so we can strip off everything after the .csv
, starting with the query parameters ?
.
Download CSV
Let’s use this URL to download a new file
# set variables
<- "https://oceanview.pfeg.noaa.gov/erddap/tabledap/cciea_AC.csv"
csv_url # if ERDDAP server down (Error in download.file) with URL above, use this:
# csv_url <- "https://raw.githubusercontent.com/microbiaki/workshop_t2/main/data/cciea_AC.csv"
<- "data"
dir_data # derived variables
<- file.path(dir_data, basename(csv_url))
csv # create directory
dir.create(dir_data, showWarnings = F)
# download file
if (!file.exists(csv))
download.file(csv_url, csv)
Read table
Now open the file by going into the Files RStudio pane, More -> Show Folder in New Window. Then double click on data/cciea_AC.csv
to open in your Spreadsheet program (like Microsoft Excel or Apple Pages or LibreOffice Calc).
# attempt to read csv
<- read.csv(csv)
d # show the data frame
head(d)
Note how the presence of the 2nd line with units makes the values character <chr>
data type. But we want numeric values. So we could manually delete that second line of units or look at the help documentation for this function (?read.csv
in Console pane; or F1
key with cursor on the function in the code editor pane). Notice the skip
argument, which we can implement like so:
# read csv by skipping first two lines, so no header
<- read.csv(csv, skip = 2, header = FALSE)
d
# update data frame to original column names
names(d) <- names(read.csv(csv))
#fix year
$time<-sub("-.+", "", d$time)
d
$time<-as.integer(d$time)
d# update for future reuse (NEW!)
write.csv(d, csv, row.names = F)
datatable(d)
Series line plot
Next, let’s also show the other regional values (CA
, OR
and WA
; not coastwide
) in the plot as a series with different colors aes(color = region)
. To do this, we’ll want to tidy the data into long format so we can have a column for total_fisheries_revenue
and another region
column to supply as the group
and color
aesthetics based on aesthetics we see are available for geom_line()
:
<- d %>%
d_rgn # select columns
select(
time, starts_with("total_fisheries_revenue")) %>%
# exclude column
select(-total_fisheries_revenue_coastwide) %>%
# pivot longer
pivot_longer(-time) %>%
# mutate region by stripping other
mutate(region = name %>%
str_replace("total_fisheries_revenue_", "") %>%
str_to_upper()) %>%
# filter for not NA
filter(!is.na(value)) %>%
# select columns
select(time, region, value)
# create plot object
<- ggplot(
p_rgn
d_rgn,# aesthetics
aes(x= time, y = value, group = region, color = region))+
theme_bw()+
labs(x = "Year", y = "Millions $")+
theme(axis.text.x = element_text(color = "black", size = 12, hjust = 1, vjust = 1),
axis.text.y = element_text(color = "black", size = 12),
axis.title.x = element_text(color = "grey30", face = "bold", size = 14),
axis.title.y = element_text(color = "grey30", face = "bold", size = 14))+
# geometry
geom_line()
# show plot
p_rgn
Make interactive ggplots with ggplotly()
When rendering to HTML, you can render most ggplot
objects interactively with ggplotly()
. The plotly
library is an R htmlwidget providing simple R functions to render interactive JavaScript visualizations.
library(plotly)
ggplotly(p_rgn)
More information on plotly can be found on “Improving plotly”.
Create interactive time series with dygraph()
Another htmlwidget plotting library written more specifically for time series data is dygraphs
. Unlike the ggplot2 data input, a series is expected in wide (not tidy long) format. So we use tidyr’s pivot_wider()
first.
library(dygraphs)
<- d_rgn %>%
d_rgn_wide rename(Year = time) %>%
pivot_wider(names_from = region,values_from = value)
datatable(d_rgn_wide)
%>%
d_rgn_wide dygraph() %>%
dyRangeSelector()
%>%
d_rgn_wide dygraph() %>%
dyOptions(stackedGraph=TRUE)%>%
dyRangeSelector()
The example above is rather simple since we used a table that contained time as a numeric variable. If time is a date variable the process is a bit more involved. Information on how to work with dates and how to to get your data at the date
format can be found here.
Further reading:
- Cédric’s beautify plots
- Graphs with ggplot2
- Dual Y axis
- Top 50 ggplot visualizations
- ZevRoss Beautiful plotting in R
- FAQ-reordering
- Color brewer
- Sarah’s R ventures
- Riffomonas Code Club videos
- BVCN. Specifically lesson 8b - on how to do PCA and PCoA in R (https://youtu.be/lSgwJBPW88k)
- Link to Hu et al. 2021- all code associated with paper, includes example PCA, bar plots, heat maps, and more
- Keyboard shortcuts